preCICE

Testimonials

Exascale Simulation of Fluid-Structure-Acoustics Interaction

At TU Darmstadt we are interested in engineering applications that involve coupled fluid-structure problems, as well as aeroacoustics. Our research focuses on the development of our CFD/CAA solver FASTEST, which we couple via preCICE to the structural solver FEAP, and to the generic solver Ateles for an acoustic far-field. preCICE is particularly well-equipped for cutting-edge research: it is highly customizable to specific setups, it has a comprehensive debugging output that lets you find errors fast, and it offers high scalability that ensures applicability to large problems in future years. Especially important for us is the availability of advanced coupling schemes and post-processing methods. Over the several years of cooperation with the preCICE developers we have learned to appreciate their quick and competent response to support and feature requests.
Dr. Thorsten Reimann, Scientific Computing, Technical University Darmstadt

Evaluation of Heart Valve Biomechanics

We are performing research into the design of artificial heart valves, by using experimental and numerical techniques. We are currently using preCICE to couple OpenFOAM (FOAM-Extend, self-written adapter with immersed boundary approach) and CalculiX (official adapter) to perform numerical simulations of the opening and closing of heart valves. We are using preCICE as it can handle numerical simulations of large sizes with ease as opposed to previous in-house couplers. Furthermore, the quick and efficient coupling techniques reduce our simulation time significantly.
Kyle Davis, University of the Free State, Department of Cardiothoracic Surgery, South Africa

FSI Simulations of High Impact Loads on Structures

Understanding high energetic explosive impact loads on structures is fundamental in risk assessment and development of mitigation plans. Using preCICE as a coupling platform, we successfully coupled our in-house unstructured compressible flow solver (muSICS) with an opensource structural FEM solver (CalculiX). Acting as a plug-in to existing solvers, preCICE provided a very efficient coupling mechanism for fluid-structure interaction applications. Collaborating with the developer from preCICE team has been instrumental for us to further develop our inhouse capability for this type of simulation platform. We would continue and look forward to our collaboration with the preCICE team for future applications. Learn more
Vinh-Tan Nguyen, PhD, Senior Scientist and Capability Group Manager, Institute of High Performance Computing, A*STAR, Singapore